PlasticPortal.eu - daily updated portal for the plastics and rubber

News
Azurr-Technology, Ltd. - Invitation to Interplastica in Moscow in 2018

19.01.2018 | Azurr-Technology, s.r.o. invites you to the Interplastics 2018 Fair, where he will introduce a wide range Dynisco.

Possibilities of obtaining a grant in the Slovak Republic

17.01.2018 | Newsletter - January 2018.

COBA received supplier award for the second time

15.01.2018 | COBA was recently invited to a meeting of AGC - AGC Automotive Supplier Day suppliers in Belgium.

NEWMATEC 2018 in just two months in Tale

12.01.2018 | Automotive Industry Association of the Slovak Republic invites you to the 4rd Annual Conference NEWMATEC.

Conference Molds and Plastics 2018

10.01.2018 | Company JAN SVOBODA s.r.o. invites you to the 9 edition of the traditional conference Plastics and Molds 2018 which takes place in a pleasant atmosphere at Maximus Resort (Hrázní 327 / 4a, 635 00 Brno).

 
Translation dictionary
Portal LAWS AND STANDARDS
Portal LAWS AND STANDARDS
Current in legislation
Harmonized standards in October 2017

18.12.2017 | In the Official Journal of the EU were to October 2017 published the following titles and references of harmonized standards:

Of Act no. 79/2015 Z.z. about waste - an amendment

11.12.2017 | Amendment no. 292/2017 of Act No. 79/2015 Coll. on waste takes effect from 1.1.2018 until 31.12.2022.

Content of PAH in articles and toys

03.07.2017 | The ECHA website is a new call for submission of comments and evidence on the PAH content listed in REACH item 50 of Annex XVII on articles and toys.

The new amendment to Regulation No. 10/2011 (PIM regulation) on plastic materials and articles intended to come into contact with food

31.05.2017 | Commission Regulation No. (EU) 2017/752 amends and corrects the PIM regulation on plastic materials and articles intended to come into contact with fo ...

 
Newsletter
CAPTCHA Image
 
Home > Featured Articles > Radiation crosslinking - an innovative way to improve the tribological properties of plastic products
Radiation crosslinking - an innovative way to improve the tribologi ...
 
 
Radiation crosslinking - an innovative way to improve the tribological properties of plastic products

Radiation crosslinking - an innovative way to improve the tribological properties of plastic products

The requirements for plastic parts, especially their tribological properties, are constantly increasing. This applies in particular to plastics used in machinery and other equipment and exposed to high loads. At the same time, the topic of replacing metals in light constructions is becoming increasingly important. Thanks to radiation crosslinking, the desired tribological properties can be achieved, increase the life of the products and reduce their downtime in operation. Moreover, it is possible to reduce their total weight as compared to the use of metals.

Oblasti využití plastových výrobků neustále přibývají a vytlačují často nákladná řešení z kovu. To je například případ téměř všech druhů pohonů – mimo jiné v automobilovém průmyslu, u E&E aplikací, v průmyslových zařízeních nebo v domácích spotřebičích. Plasty se při tom používají na ozubená kola, ložisková pouzdra nebo jiné kluzné prvky. Chemická odolnost a schopnost fungovat bez použití maziv a kluziv předurčují plastové díly k tomu, aby se využívaly především v lékařství a potravinářském průmyslu. Kromě toho je jejich hlavní výhodou nízká hmotnost ve srovnání s kovem, což přináší vysoký potenciál úspor u lehčených konstrukcí, které jsou v mnoha průmyslových odvětvích stále důležitější – hlavně s ohledem na zvyšující se požadavky na mobilitu v oblasti automobilového průmyslu (např. u elektromobilů a nebo s cílem snížit emise CO2), ale i u jízdních kol, v železniční dopravě či v letecké a kosmické technice.

Ale právě vysoké množství požadavků na plastové díly je často důvodem jejich poškození a defektů, které tak způsobují výpadky strojů a zařízení, což vede k prostojům a k navyšování nákladů v provozu. Pro vyloučení těchto možných problémů jsou nepostradatelné informace k vznikajícím procesům tření a opotřebení. Materiál se musí zvolit a upravit tak, aby vyhovoval všem těmto vlastnostem. V souvislosti s tím nabývá na významu optimalizace tribologických vlastností polymerních materiálů, které vycházejí z přesných požadavků kladených na použité plastové díly.

Při výběru výchozího materiálu pro daný výrobek záleží na tom, jaký plast splňuje požadavky na koeficient opotřebení, pevnost v tlaku, teplotní rozsah použitelnosti, případné rázové zatížení a potřebnou tvarovou stálost. Součástky – jako např. ozubená kola – se často vyrábějí vstřikováním. Díky velmi nízkému koeficientu tření vůči jiným materiálům (např. oceli) používají výrobci rádi jako ložiskový materiál polytetrafluorethylen (PTFE). Jsou-li požadavky kladené na díly pohonů vysoké, doporučují se vysoce výkonné polymery jako polyetheretherketon (PEEK), polyfenylensulfid (PPS) nebo duroplasty. Tyto materiály ovšem nejsou pouze mnohem dražší než technické termoplasty, ale kladou také vyšší požadavky na jejich zpracování. Existuje ale i cenově výhodnější alternativa.


Radiační síťování: Optimalizace, která zušlechťuje plasty a otevírá nové oblasti jejich použití 

Pomocí metody radiačního síťování lze optimalizovat technické plasty, které tak získají vlastnosti vysoce výkonných plastů. Technologie je velmi jednoduchá, levná a lze ji aplikovat u různých částí procesního řetězce. K radiačnímu zesíťování plastových výrobků se využívá vzniklé energie (ionizující záření) buď ve formě elektronového záření (beta záření), a nebo u složitých a velkých dílů lze také úspěšně využít gama záření, které se vyznačuje vyšší hloubkou pronikání. Působení ionizujícího záření vznikají ve struktuře ozařovaného polymeru volné radikály, jejíchž vzájemné reakce vedou k procesu síťování polymerních řetězců. Radiační síťování, které probíhá především v amorfních oblastech polymerů méně odolných proti opotřebení, tak vytvoří polymerní síť.

Změnou struktury se v porovnání s neozářeným materiálem dosahuje modifikovaných mechanických vlastností. Co se týká tribologických požadavků, znamenají účinky radiačního síťování jasnou výhodu (viz tabulku 1).[1]

 

Účinky ozáření elektrony

Vliv na tribologické vlastnosti

Vyšší stupeň zesíťování

Vyšší odolnost proti opotřebení

Zvýšení teplotní odolnosti a tvarové stálosti za tepla

Vyšší odolnost vůči teplu vzniklému třením, bez tavení kluzné plochy

Snížení koeficientu teplotní roztažnosti

Vyšší rozměrová stálost

Snížení náchylnosti k vzniku trhlin způsobených pnutím

Rozmanité možnosti mazání

Lepší pevnost a odolnost proti tečení za studena (creep)

Vyšší mechanické zatížení (přenositelné momenty / ozubená kola) v delším čase

Tabulka 1: Účinky ionizačního záření / na tribologické vlastnosti,  Zdroj: Carl Hanser-Verlag, Mnichov (viz poznámka pod čarou 1)


Například u mikrosoučástek a ozubených kol se vlivem složité geometrie vyskytuje nepříznivý poměr povrchu vůči objemu součástky pro vznik vhodné morfologie a krystalinity. Proto právě tyto tribologicky velmi namáhané okrajové oblasti výrobku vykazují amorfní struktury. Tyto struktury z radiačního síťování velmi profitují tím, že se zesíťováním výrazně zvýší otěruvzdornost a sníží koeficient opotřebení (viz obr. 2).

 

 

   Obr. 1: Oblast použití nezesíťovaného PA 6.6 pod tribologickým zatížením je 20 °C. Radiační síťování zabraňuje tání polymeru a zvyšuje teplotu trvalého použití až o 100 °C a zároveň redukuje koeficientem opotřebení. Díky vyššímu teplotnímu rozsah použitelnosti dosahuje míra opotřebení svého minima teprve při cca 170 °C. Zdroj: BGS

 

Zlepšení tepelných vlastností díky radiačnímu síťování

Termoplastické materiály získávají radiačním síťováním termoelastické vlastnosti. Reakcí vzniká síť, která inhibuje tečení plastu – při vyšších teplotách se materiál chová jako elastomer. Lepší teplotní stabilita a výrazně lepší mechanické parametry při vyšších teplotách jsou podstatnými znaky radiačního síťování. Následkem toho  klesají u nezesíťovaného PA 6.6 moduly nad teplotou tání krystalitů prakticky na nulu. Oproti tomu u zesíťovaného zaručují výrazně vyšší moduly dostatečně vysokou pevnost – i při teplotách vyšších než 350 °C. Kromě toho se snižuje koeficient délkové teplotní roztažnosti. Zesíťovaný PA 6.6 vykazuje o 20 °C lepší teplotní index (5 000 h; 60% pokles poměrného prodloužení při přetržení).

 

 

   Obr. 2: Ověření teplotní odolnosti a tvarové stálosti za tepla zesíťovaných součástek měřením hloubky vniku při testu horkým hrotem (vlevo: nezesíťovaný materiál, vpravo: zesíťovaný materiál PA-6 GF30, zatížení: 1 000 g, teplota: 350 °C). Zdroj: BGS


Vědecky podložený úspěch „upgradu plastu“

Potenciál využití plastů zesíťovaných technologií radiačního síťování (především polyamidů) v nejrůznějších oblastech a především v odvětvích s vysokými nároky na tribologické vlastnosti je rozmanitý a byl podložen četnými výzkumy vědeckých institucí, např. katedrou technologie plastů (Lehrstuhl für Kunststofftechnik) univerzity Friedrich-Alexander-Universität Erlangen-Nürnberg. Radiačně zesíťovaný polyamid vykazuje vynikající odolnost proti opotřebení i při vyšších okolních teplotách a lze jej tak použít i v aplikacích, které byly dosud výhradně doménou nákladných (high-tech) vysoce výkonných termoplastů jako např. PEEK a PPS, nebo duroplastů. U komponent pohonů a motorů, jako např. v konstrukci a výrobě automobilů, které jsou vystaveny vysokým teplotám a četným tribologickým procesům opotřebení, přináší radiační síťování zároveň enormní potenciál úspor díky snížené hmotnosti nahrazením kovových materiálů (lehčené konstrukce). Protože hotové díly získají využitím technologie radiačního síťování fyzikální vlastnosti (high-tech) vysoce výkonných termoplastů, přináší to navíc výhody nižších nákladů na pořízení daného polymeru a na jeho zpracování. Tyto výhody se samozřejmě týkají všech průmyslových odvětví, ve kterých hrají důležitou roli užitné vlastnosti jako pevnost, teplotní odolnost, odolnost proti opotřebení i lehčená konstrukce.

Díky radiačnímu síťování lze zlepšit profil vlastností technických plastů nově vytvořenými  kovalentními vazbami makromolekul. Také výzkumy dokazují, že se tato technologie úspěšně využívá u tribologicky zatěžovaných dílů: To umožnilo hlavně zlepšení mechanických vlastností i zvýšení tvarové stálosti při působení vyšších teplot, které jinak urychluje opotřebení výrobku. Především v méně krystalických, tribologicky namáhaných okrajích se radiačním síťováním výrazně zvyšuje odolnost proti otěru. Celkově se radiačním síťováním jednoznačně rozšiřuje teplotní rozsah použitelnosti polyamidů při daných zatíženích (drsnost, kluzná rychlost, povrchové tlak, zkušební teplota).[2] Výrobcům plastů nevznikají další investice. Delegují poslední stupeň zušlechtění plastového výrobku před dodáním na dodavatele ozařovacích služeb jako BGS – se závody v městech Wiehl, Bruchsal a Saal.

 

BGS Beta-Gamma-Service GmbH & Co. KG

 
Sídlo zastoupení pro ČR, SR
Fritz-Kotz-Strasse 16, Ing. Michal Daněk, Ph.D.
Wiehl, DE-51674 Masarykova 378
Německo Strážnice, CZ-69662
Tel.: 0049 2261 78 99 0   

Tel.: 00420 739 087 336

info@bgs.eu danek@bgs.eu

www.bgs.eu

 

 


[1] Viz: Dipl.-Ing. Zaneta Brocka, Prof. em. Dr.-Ing. Dr. h.c. Gottfried W. Ehrenstein, Lehrstuhl für Kunststofftechnik, Universität Erlangen-Nürnberg (2006): Strahlenvernetzung von Polyamid zur Verbesserung des tribologischen Verhaltens. In: Kunststofftechnik 2 (2006), s. 5, Carl Hanser-Verlag, Mnichov.

[2] Viz: Dipl.-Ing. Zaneta Brocka, Prof. em. Dr.-Ing. Dr. h.c. Gottfried W. Ehrenstein, Lehrstuhl für Kunststofftechnik, Universität Erlangen-Nürnberg (2006): Strahlenvernetzung von Polyamid zur Verbesserung des tribologischen Verhaltens. In: Kunststofftechnik 2 (2006), s. 27, Carl Hanser-Verlag, Mnichov.

11.10.2017
autor: BGS Beta-Gamma-Service GmbH & Co. KG
 
 
 
 
 
Recommend article Print article Back
 
 

Back


 
Latest ads
 
 

Sale | PP/HDPE
19.01.2018

 
 

Sale | ldpe films
18.01.2018

 
 

Sale | LDPE Rolls
18.01.2018

 
 

Buy | PC/ABS
18.01.2018

 
 

Buy | PC/ABS
18.01.2018

 
 

Buy | PC regrind
18.01.2018

 
 

Buy | TPE,TPV,TPO,TPU
18.01.2018

 
 
 
Exhibitions
Automotive Lightweight Technology Expo 2018

17.01.2018 | Japan's Only Exhibition Specialised in Automotive Lightweight Technologies! -The Best Place to Meet Automotive Engineers from All Over the World-

Saudi Plastics and Petrochem 2018

21.01.2018 | International Trade Exhibition for plastics and petrochemicals.

Interplastica 2018

23.01.2018 | Fair for plastics technology.

EXPOSHOP 2018

25.01.2018 | Exhibition of machines and technologies for business.

Danubius Gastro 2018

25.01.2018 | 25. international Fair of Gastronomy Danubius Gastro.

Gastropack 2018

25.01.2018 | Exhibition of Packing Materials and techniques.

SamuPlast

31.01.2018 | Exhibition of excellence for technology, machinery and plastic materials.

Expo manufactura

06.02.2018 | International Trade Fair for manufacturing, metal and plastics processing.